12-6 Solving Problems Involving Quadratic Equations

Objective: To use quadratic equations to solve problems.

Example

A landscaper wishes to design a rectangular formal garden that will be 6 m longer than the width. If the area of the garden is to be 135 m², find the length and the width.

Solution

- Step 1 The problem asks for the length and the width of the garden.
- Step 2 Let x = the width in meters. Then x + 6 = the length in meters.
- Step 3 Use the formula for the area of a rectangle to write an equation.

Length
$$\times$$
 Width = Area $x(x + 6) = 135$

$$x^{2} + 6x = 135$$

$$x^{2} + 6x + 9 = 135 + 9$$

$$(x + 3)^{2} = 144$$

$$x + 3 = \pm \sqrt{144}$$

$$x + 3 = \pm 12$$

$$x = -3 \pm 12$$

$$x = 9 \text{ or } x = -15$$

Step 5 Disregard the negative root since a negative length has no meaning.

Check: 9:
$$9(9 + 6) \stackrel{?}{=} 135$$

 $9(15) \stackrel{?}{=} 135$
 $135 = 135 \checkmark$

The width of the garden is 9 m and the length is 15 m.

Solve. Give irrational roots to the nearest tenth. Use your calculator or a table of square roots as necessary.

- 1. The sum of a number and its square is 72. Find the number.
- 2. The sum of a number and its square is 30. Find the number.
- 3. The difference of a number and its square is 110. Find the number.
- 4. The difference of a number and its square is 132. Find the number.
- 5. The width of a rectangular garden is 4 m shorter than the length. If the area of the garden is 320 m², find the length and the width.
- **6.** An architect wants to design a rectangular building such that the area of the floor is 400 yd². The length of the floor is to be 10 yd longer than the width. Find the length and the width of the floor.

12-6 Solving Problems Involving Quadratic Equations (continued)

Solve. Give irrational roots to the nearest tenth. Use your calculator or a table of square roots as necessary.

- 7. The length of a rectangle is 3 times the width. The area of the rectangle is 48 cm². Find the length and the width.
- 8. The length of a rectangular park is 5 m longer than the width. If the area of the park is 150 m^2 , find the length and the width.
- 9. The length of a rectangle is twice the width. The area of the rectangle is 72 m². Find the length and the width.
- 10. The length of the base of a triangle is twice its altitude. If the area of the triangle is 144 cm^2 , find the altitude. (*Hint*: Area of a triangle = $\frac{1}{2} \times \text{base} \times \text{height.}$)
- 11. The altitude of a triangle is 5 m less than its base. The area of the triangle is 80 m². Find the base.
- 12. If the sides of a square are increased by 3 cm, its area becomes 144 cm². Find the length of the sides of the original square.
- 13. If the sides of a square are increased by 4 cm, its area becomes 196 cm². Find the length of the sides of the original square.
- 14. If you square a positive number, add ten times the number and subtract 84, the result is 180. What is the number?
- 15. Oscar has a rectangular garden that measures 18 m by 15 m. Next year he wants to increase the area to 340 m² by increasing the width and the length by the same amount. What will be the dimensions of the garden next year?
- 16. Working alone, Carrie can paint a house in 3 h less than Walter. Together Carrie and Walter can paint a house in 8 h. How long does it take Walter to paint a house alone?
- 17. Andrea can ride her bike 2 mi/h faster than Ruby. It takes Andrea 48 min less to travel 50 mi than it does Ruby. What is Andrea's rate in mi/h?

Mixed Review Exercises

Solve.

1.
$$\frac{\sqrt{n}}{2} = \frac{\sqrt{5}}{1}$$

2.
$$\frac{\sqrt{x-2}}{4} = \frac{3}{2}$$

3.
$$\frac{\sqrt{3t}}{8} = \frac{1}{4}$$

4.
$$\frac{12}{5} = \frac{36}{n}$$

5.
$$m^2 = 12m - 32$$

6.
$$\frac{x-2}{x+3} + x = 2$$

In Exercises 7-9, (x_1, y_1) and (x_2, y_2) are ordered pairs of the same direct variation. Find the missing value.

7.
$$x_1 = 1, y_1 = 3$$

$$x_2 = 6, y_2 = \underline{?}$$

8.
$$x_1 = 8, y_1 = \underline{?}$$

$$x_2 = 4, y_2 = 5$$

9.
$$x_1 = 12, y_1 = 16$$

$$x_2 = ?, y_2 = 8$$