FORMULAS FOR SEQUENCES AND SER IES

	DESCRIPTION OF FORMULA	FORMULA
	Recursive Formula Arithmetic Sequence	$a_{n}=a_{(n-1)}+d$ Where dis the commondifference.
	Recursive Formula Geometric Sequence	$a_{n}=r \cdot a_{(n-1)}$ Where is the common ratio.
	nth term of an Arithmetic Sequence	$a_{n}=a_{1}+(n-1) d$ Where n is any natural number.
	GENERAL Sum of an Arithmetic Series	$S_{n}=n\left[\frac{a_{1}+a_{n}}{2}\right]$
	ALTERNATE Sum of an Arithmetic Series	$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
	Sigma Notation Sum of an Arithmetic Series	$\sum_{k=1}^{n} f(k)$ Where $k=1$ is the first value of k, n is the last value k, and $f(k)$ is the formula for the terms of the series.
	nth term of a Geometric Sequence	$a_{n}=a_{1} \cdot r^{(n-1)}$ Where n is any natural number.
	Sum of a Geometric Series (Use when given a_{1} and n.)	$S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}, \text { and } r \neq 1$
	Sum of a Geometric Series (Use when given a_{1} and a_{n}.)	$S_{n}=\frac{a_{1}-a_{n} r}{1-r}, \text { and } r \neq 1$
	Sum of a Geometric Series (Use when given a_{1} and a_{n}.)	$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \text {, and } r \neq 1$
	Sigma Notation Sum of a Geometric Series	$\sum_{k=1}^{n} a_{1}(b)^{(k-1)}$ Where k is the first value of k, n is the last value of k, a_{1} is the first term, and b is the base.
	Sum of an Infinite Geometric Series	$\begin{aligned} & S=\frac{a_{1}}{1-r} \text {, with }-1<r<1 \\ & \text { If }\|r\| \geq 1 \text {, the series has no sum. } \end{aligned}$
	Sigma Notation Sum of an Infinite Geometric Series	$\sum_{k=1}^{\infty} a_{1}(b)^{(k-1)}$ Where k is the first value of k, the last value of k is infinite, a_{1} is the first term, and b is the base.
	Binomial Theorem $(a+b)^{n}=$${ }_{n} C_{0} a^{n} b^{0}+{ }_{n} C_{1} a^{(n-1)} b^{1}+{ }_{n} C_{2} a^{(n-2)} b^{2}+{ }_{n} C_{3} a^{(n-3)} b^{3}+\ldots+{ }_{n} C_{n} a^{0} b^{n}=\sum_{k=0}^{n} \frac{n!!(n-k)!}{k!} \cdot a^{n-k} b^{k}$	

