Algebra

absolute value $\|x-y\|$	the distance between 2 points, x and y, on a number line	
absolute value $\|x\|$	$\|x\|=\left\{\begin{array}{ll} x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0 \end{array} \quad\|x\| \text { expresses the distance from } x\right. \text { to zero on the number line }$	
distance formula	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=$ distance between 2 points ($\left.\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) on coordinate plane	
midpoint formula	$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=$ (average of the x coordinates, average the y coordinates)	
slope of a line between any 2 points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$)	$\begin{array}{ll} m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \begin{array}{l} \text { slope is the measure of the steepness of a line } \\ \\ \end{array} \begin{array}{l} \text { horizontal line slope }=0 ; \text { vertical line slope is undefined } \\ \text { parallel lines have equal slopes; } \\ \text { perpendicular lines - slopes are opposite (negative) reciprocals;product of slopes }=-1 \end{array} \end{array}$	
linear equation slope intercept form point-slope form standard form	$\begin{aligned} & y=m x+b \text {, where } m=\text { slope and } b=y \text { coordinate of the } y \text {-intercept } \\ & y-y_{1}=m\left(x-x_{1}\right) \\ & A x+B y=C \end{aligned}$	
equations for a circle	$\begin{array}{ll} x^{2}+y^{2}=r^{2} & \text { circle centered at }(0,0) \text { with radius } r \\ (x-h)^{2}+(y-k)^{2}=r^{2} & \text { circle centered at }(\mathrm{h}, \mathrm{k}) \text { with radius } r \end{array}$	
equations for parabola	$y=a(x-h)^{2}+k$ parabola opens up or down; vertex at (h, k) $x=a(y-k)^{2}+h$ parabola opens left or right; vertex at (h, k)	
factoring difference of 2 squares sum of 2 squares difference of 2 cubes sum of 2 cubes perfect square trinomials	$a^{2}-b^{2}=(a+b)(a-b)$ prime (not factorable) $\begin{aligned} & a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\ & a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\ & (a+b)^{2}=a^{2}+2 a b+b^{2} \quad \text { and } \end{aligned}$ $(a-b)^{2}=a^{2}-2 a b+b^{2}$	
quadratic formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ yields solutions for $a x^{2}+b x+c=0$ Note: the sum of the two solutions is $-b / a$ and product of solutions $=c / a$	
discriminant test	$\mathrm{b}^{2}-4 \mathrm{ac}=0 \rightarrow$ one real solution $\mathrm{b}^{2}-4 \mathrm{ac}>0 \rightarrow$ two real solutions $\mathrm{b}^{2}-4 \mathrm{ac}<0 \rightarrow$ two complex conjugate solutions	
exponent rules	$x^{0}=1 \quad\left(x^{a}\right)^{b}=x^{a b} \quad x^{a} x^{b}=x^{a+b} \quad \frac{x^{a}}{x^{b}}=x^{a-b} \quad x^{-a}=\frac{1}{x^{a}} \text { and } \frac{1}{x^{-a}}=x^{a}$	
radicals and exponents	$\sqrt{x}=x^{1 / 2} \quad \sqrt[3]{x}=x^{1 / 3} \quad \sqrt[b]{x^{a}}=x^{a / b}$	
complex number	$\mathrm{i}=\sqrt{-1} \quad \mathrm{i}^{2}=-1 \quad \mathrm{i}^{3}=-\mathrm{i} \quad \mathrm{i}^{4}=1$	
absolute value equation	If \|algebraic expression	$=\mathrm{A}$, then set up two equations and solve: algebraic expression $=\mathrm{A}$ and algebraic expression $=-\mathrm{A}$
absolute value inequalities	If \|algebraic expression $\mid<\mathrm{A}$, then set up compound inequality (conjunction) and solve: -A < algebraic expression < A If \|algebraic expression	>A, then set up two inequalities (disjunction) and solve: algebraic expression > A or algebraic expression < -A

TUTORING

ACT/SAT Formulas and Facts
 revised 4/2018

Algebra

distance	$d=r t \quad$ distance $=$ rate x time
average (mean)	$\text { average }=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}$
\% change	$\text { percent change }=\frac{\text { change in quantity }}{\text { original quantity }}$
proportion	$\frac{a}{b}=\frac{c}{d}$ implies $a d=b c$ by cross-multiplication
direct variation	$y=k x \quad$ or $\quad \frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}$ where k is the constant of variation
inverse variation	$x y=k \quad$ or $\quad x_{1} y_{1}=x_{2} y_{2}$ where k is the constant of variation
arithmetic sequence	$a_{n}=a_{1}+(n-1) d$, nth term of arithmetic sequence, d is the common difference between terms
arithmetic series	$S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}, \mathrm{~S}_{\mathrm{n}}=$ sum of first " n " terms of a finite geometric series; $\mathrm{a}_{1}=$ first term
geometric sequence	$a_{n}=a_{1} r^{n-1}$ nth term of the geometric series; r is the common ratio
geometric series	$S_{n}=a_{1}+a_{1} r+\ldots+a_{1} r^{n-1}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}, \mathrm{~S}_{\mathrm{n}}=$ sum of first " n " terms of geometric series
probability	Probability of an outcome happening $=\frac{\text { number of desired outcomes }}{\text { total number of possible outcomes }}$ Probability of two mutually exclusive events, A and B , happening $=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
combinations	A combination means the order of the elements doesn't matter. For example, a shirt and pants is the same thing as pants and a shirt. Possible combinations of 3 shirts and 4 pants $=3 \times 4=12$. ${ }_{n} C_{r}=\frac{n!}{r!(n-r)!}$ number of combinations of n items taken r at a time; order does not matter;
permutations	${ }_{n} P_{r}=\frac{n!}{(n-r)!} \quad$ number of ways to arrange n items taken r at a time; order does matter;
logarithms	$\begin{aligned} & \log _{b} y=x \quad \text { means } \quad y=b^{x} \\ & \log _{b} M N=\log _{b} M+\log _{b} N \\ & \log _{b}(M / N)=\log _{b} M-\log _{b} N \\ & \log _{b} M^{N}=N \log _{b} M \\ & \log _{b} M=\frac{\log _{c} M}{\log _{c} b} \quad \text { (change of base formula) } \end{aligned}$
Transformations	
Translation (no rotation or size change) Reflection (flip)	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+\mathrm{a}, \mathrm{y}+\mathrm{b})$ represents horizontal shift of "a" units, vertical shift of "b" units);
Over x -axis	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x},-\mathrm{y})$
Over y-axis	$(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{x}, \mathrm{y})$
Over line $\mathrm{y}=\mathrm{x}$	$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{y}, \mathrm{x})$
Over origin (line $\mathrm{y}=-\mathrm{x}$)	$(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{y},-\mathrm{x})$
Rotation about origin	
$90^{\circ} \mathrm{CCW}$ or $270^{\circ} \mathrm{CW}$	$(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{y}, \mathrm{x})$
$\begin{aligned} & 180^{\circ} \mathrm{CCW} \text { or } 180^{\circ} \mathrm{CW} \\ & 270^{\circ} \mathrm{CCW} \text { or } 90^{\circ} \mathrm{CW} \\ & \hline \end{aligned}$	$(x, y) \rightarrow(-x,-y)$ $(x, y) \rightarrow(y,-x)$

tUTORING

Geometry

Perimeter	In general, perimeter = sum of lengths of sides
square	$\mathrm{P}=4 \mathrm{~s}$
rectangle	$\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$
circle	$\mathrm{C}=2 \pi \mathrm{r}$ (circumference)
Area	Note that the units are square units.
square	$\mathrm{A}=\mathrm{s}^{2}$
rectangle, parallelogram	$\mathrm{A}=\mathrm{bh}$ (note base and height are always perpendicular)
triangle	$\mathrm{A}=1 / 2 \mathrm{bh}$
kite	$A=1 / 2\left(d_{1} d_{2}\right)$ where d_{1} and d_{2} are lengths of the diagonals
circle	$\mathrm{A}=\pi \mathrm{r}^{2}$
trapezoid	$\mathrm{A}=1 / 2\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right) \mathrm{h}$ (average of bases times the height)
Volume	$\mathrm{B}=$ area of base; $\mathrm{h}=$ height
cube	$V=B h=s^{3} \quad$ where s is the side length
rectangular prism	$V=B h=l w h$
sphere	$V=\frac{4}{3} \pi r^{3}$
cone	$V=\frac{1}{3} \pi r^{2} h$
cylinder	$V=B h=\pi r^{2} h$
Triangles	
Congruency Theorems	SSS, SAS, ASA, or AAS or use H-L (right triangles only)
Pythagorean Theorem	$c^{2}=a^{2}+b^{2} \quad$ is used to find length of sides or hypotenuse, c , for a right triangle If $c^{2}=a^{2}+b^{2}$, then the triangle is a right triangle (Converse of Pythagorean Theorem) If $c^{2}<a^{2}+b^{2}$, then the triangle is acute If $c^{2}>a^{2}+b^{2}$, then the triangle is obtuse
Common Pythagorean Triples	$3-4-5$ $5-12-13$ $6-8-10$ $10-24-26$ $R-24-25$ $8-15-17$
45-45-90 triangle	ratios of sides lengths: $1 x: 1 x: x \sqrt{2}$
30-60-90 triangle	ratios of sides lengths: $1 x: x \sqrt{3}: 2 x$
Law of Sines and Law of Cosines (for non-right triangles)	For non-right triangles, use the Law of Sines to find side lengths and angles when possible, or use Law of Cosines when you have 2 sides and the included angle . $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \quad c^{2}=a^{2}+b^{2}-2 b c \cos C$

TUTORING

Other Formulas and Facts	
sum of interior angles of a convex polygon	$\mathrm{S}=(\mathrm{n}-2) 180^{\circ}, \mathrm{n}=\#$ of sides
sum of exterior angles in a convex polygon	sum of exterior angles always equals 360°
number of diagonals in a convex polygon	\# of diagnonals $=\frac{n(n-3)}{2}$, where $n=$ number of sides
inscribed angle facts	An inscribed angle a is half the central angle, 2 a . Therefore, the inscribed angle 90° is half of the central angle 180°. A Cyclic Quadrilateral's opposite angles add up to 180° : $\begin{aligned} & a+c=180^{\circ} \\ & b+d=180^{\circ} \end{aligned}$ A tangent is a line that just touches a circle at one point. It always forms a right angle with the circle's radius to the point of tangency.
sector area of a circle	$A=\frac{\theta^{\sigma}}{360^{\circ}} \cdot \pi r^{2}=$ fractional part of the circle's area
length of intercepted arc	$L=\frac{\theta^{\circ}}{360^{\circ}} \cdot 2 \pi r=$ fractional part of the circumference
Length of diagonal of a rectangular prism	$d=\sqrt{L^{2}+H^{2}+W^{2}}$
Vectors	$<\mathrm{a}, \mathrm{b}>+<\mathrm{c}, \mathrm{d}>=<\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d}>$ similar to add complex numbers $(\mathrm{a}+\mathrm{bi})+(\mathrm{c}+\mathrm{di})=(\mathrm{a}+\mathrm{b})+\mathrm{i}(\mathrm{c}+\mathrm{d})$

ACT/SAT Formulas and Facts revised 4/2018

Trigonometry

ACT/SAT Formulas and Facts revised 4/2018
Graphs

Parent Function	Graph	Parent Function	Graph
$\begin{gathered} \boldsymbol{y}=\boldsymbol{x} \\ \text { Linear, Odd } \\ \text { Domain: }(-\infty, \infty) \\ \text { Range: }(-\infty, \infty) \\ \text { End Behavior: } \\ x \rightarrow-\infty, y \rightarrow-\infty \\ x \rightarrow \infty, y \rightarrow \infty \end{gathered}$		$y=\|x\|$ Absolute Value, Even Domain: $(-\infty, \infty)$ Range: $[0, \infty)$ End Behavior: $\begin{aligned} & x \rightarrow-\infty, y \rightarrow \infty \\ & x \rightarrow \infty, y \rightarrow \infty \end{aligned}$	
$\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$ Quadratic, Even Domain: $(-\infty, \infty)$ Range: $[0, \infty)$ End Behavior: $x \rightarrow-\infty, y \rightarrow \infty$ $x \rightarrow \infty, \quad y \rightarrow \infty$		$y=\sqrt{x}$ Radical, Neither Domain: $[0, \infty)$ Range: $[0, \infty)$ End Behavior: $x \rightarrow \infty, y \rightarrow \infty$	
$\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}}$ Cubic, Odd Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ End Behavior: $x \rightarrow-\infty, y \rightarrow-\infty$ $x \rightarrow \infty, y \rightarrow \infty$		$y=\sqrt[3]{x}$ Cube Root, Odd Domain: $(-\infty, \infty)$ Range: $\quad(-\infty, \infty)$ End Behavior: $x \rightarrow-\infty, y \rightarrow-\infty$ $x \rightarrow \infty, y \rightarrow \infty$	
$y=b^{x}, b>1$ Exponential, Neither Domain: $(-\infty, \infty)$ Range: $(0, \infty)$ End Behavior: $\begin{aligned} & x \rightarrow-\infty, y \rightarrow 0 \\ & x \rightarrow \infty, y \rightarrow \infty \end{aligned}$		$y=\log _{b}(x), b>1$ Log, Neither Domain: $(0, \infty)$ Range: $(-\infty, \infty)$ End Behavior: $\begin{aligned} & x \rightarrow 0^{+}, y \rightarrow-\infty \\ & x \rightarrow \infty, y \rightarrow \infty \end{aligned}$	
Rational (Inverse), Odd Domain: $(-\infty, 0) \cup(0, \infty)$ Range: $(-\infty, 0) \cup(0, \infty)$ End Behavior: $\begin{aligned} & x \rightarrow-\infty, y \rightarrow 0 \\ & x \rightarrow \infty, y \rightarrow 0 \end{aligned}$		$y=\frac{1}{x^{2}}$ Rational (Inverse Squared), Even Domain: $(-\infty, 0) \cup(0, \infty)$ Range: $(0, \infty)$ End Behavior: $\begin{aligned} & x \rightarrow-\infty, y \rightarrow 0 \\ & x \rightarrow \infty, y \rightarrow 0 \end{aligned}$	
$y=\operatorname{int}(x)=[x]$ Greatest Integer, Neither Domain: $(-\infty, \infty)$ Range: $\{y: y \in \mathbb{Z}\}$ (integers) $\begin{aligned} & \text { End Behavior: } \\ & x \rightarrow-\infty, y \rightarrow-\infty \\ & x \rightarrow \infty, y \rightarrow \infty \end{aligned}$		$\begin{gathered} \boldsymbol{y}=\mathbf{C} \\ (\boldsymbol{y}=\mathbf{2} \text { in the graph) } \\ \text { Constant, Even } \\ \text { Domain: }(-\infty, \infty) \\ \text { Range: }\{y: y=C\} \\ \text { End Behavior: } \\ x \rightarrow-\infty, y \rightarrow C \\ x \rightarrow \infty, y \rightarrow C \end{gathered}$	

ACT/SAT Formulas and Facts revised 4/2018

Conic Sections

	Circle Center: (h, k)	Parabola Vertex: (h, k)	Ellipse Center: (h, k) \boldsymbol{a} always larger than \boldsymbol{b}	Hyperbola Center: (h, k) a always before the "-"
Equation (Horizontal)	$(x-h)^{2}+(y-k)^{2}=r^{2}$	$\begin{gathered} x=a(y-k)^{2}+h \\ \text { or } \\ x-h=a(y-k)^{2} \\ \text { or } \\ b(x-h)=(y-k)^{2} \end{gathered}$	$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$	$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$ Asymptotes: $y-k= \pm \frac{b}{a}(x-h)$
Graph (Horizontal)		(Positive Coefficient)		
Equation (Vertical)	Same	$y=a(x-h)^{2}+k$ or $\begin{gathered} y-k=a(x-h)^{2} \\ \text { or } \\ b(y-k)=(x-h)^{2} \end{gathered}$	$\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1$	$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$ Asymptotes: $y-k= \pm \frac{a}{b}(x-h)$
Graph (Vertical)	Same	(Positive Coefficient)		
Additional Information	To get r : $y= \pm \sqrt{r^{2}-(x-h)^{2}}+k$	For $x-h=a(y-k)^{2}$: $p=\frac{1}{4 a} ; \quad a=\frac{1}{4 p}$ For $b(x-h)=(y-k)^{2}$: $b=4 p ; \quad p=\frac{b}{4}$ $p=\text { focal length }$ Negative Coefficients: Flip parabola	$c^{2}=a^{2}-b^{2}$	$c^{2}=a^{2}+b^{2}$

