

Algebra

	Algebra					
absolute value $ x-y $	the distance between 2 points, x and y , on a number line					
absolute value $ x $	$ x = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$ x expresses the distance from x to zero on the number line					
distance formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = distance between 2 points (x ₁ , y ₁) and (x ₂ , y ₂) on coordinate plane					
midpoint formula	$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = $ (average of the x coordinates, average the y coordinates)					
slope of a line between any 2 points (x ₁ , y ₁) and (x ₂ , y ₂)	$m = \frac{y_2 - y_1}{x_2 - x_1}$ slope is the measure of the steepness of a line horizontal line slope = 0; vertical line slope is undefined parallel lines have equal slopes; perpendicular lines - slopes are opposite (negative) reciprocals; product of slopes = -1					
linear equation slope intercept form point-slope form standard form	y = mx + b, where $m =$ slope and $b = y$ coordinate of the y-intercept $y - y_1 = m (x - x_1)$ Ax + By = C					
equations for a circle	$x^2 + y^2 = r^2$ circle centered at (0, 0) with radius r					
	$(x-h)^2 + (y-k)^2 = r^2$ circle centered at (h, k) with radius r					
<u>equations for parabola</u> $y = a(x-h)^2 + k$ parabola opens up or down; vertex at (h,k)						
	$x = a(y-k)^2 + h$ parabola opens left or right; vertex at (h,k)					
factoring difference of 2 squares sum of 2 squares difference of 2 cubes sum of 2 cubes perfect square trinomials	$\begin{array}{c} a^{2}-b^{2}=(a+b)(a-b) \\ prime (not factorable) \\ a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2}) \\ a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2}) \\ (a+b)^{2}=a^{2}+2ab+b^{2} \\ \end{array}$ $\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 3 \\ 3 \\ 1 \\ 1 \\ 5 \\ 10 \\ 10 \\ 5 \\ 1 \end{array}$					
quadratic formula	$(a + b)^{2} = a^{2} + 2ab + b^{2} \text{ and } (a - b)^{2} = a^{2} - 2ab + b^{2} \qquad \qquad$					
discriminant test	$b^2 - 4ac = 0$ → one real solution $b^2 - 4ac > 0$ → two real solutions $b^2 - 4ac < 0$ → two complex conjugate solutions					
exponent rules	$x^{0}=1$ $(x^{a})^{b}=x^{ab}$ $x^{a}x^{b}=x^{a+b}$ $\frac{x^{a}}{x^{b}}=x^{a-b}$ $x^{-a}=\frac{1}{x^{a}}$ and $\frac{1}{x^{-a}}=x^{a}$					
radicals and exponents	$\sqrt{x} = x^{1/2}$ $\sqrt[3]{x} = x^{1/3}$ $\sqrt[b]{x^a} = x^{a/b}$					
complex number	$i=\sqrt{-1}$ $i^2=-1$ $i^3=-i$ $i^4=1$					
absolute value equation	If algebraic expression = A, then set up two equations and solve: algebraic expression = A and algebraic expression = -A					
absolute value inequalities	If algebraic expression < A, then set up compound inequality (conjunction) and solve:					

Brainiac Tutoring, LLC 2095 Exeter Road #80-180 Germantown TN 38138 www.BrainiacTutoring.com

Algebra

distance	d = rt distance = rate x time				
average (mean)					
uveruge (meun)	$average = \frac{x_1 + x_2 + x_3 + \dots + x_n}{x_n}$				
% change	$percent change = \frac{n}{\frac{change in quantity}{original quantity}}$				
/	$percent change = \frac{change in quantity}{change in quantity}$				
	original quantity				
proportion	a - c implies $ad - ba$ by more multiplication				
	$\frac{a}{b} = \frac{c}{d}$ implies $ad = bc$ by cross-multiplication				
direct variation					
	$y = kx$ or $\frac{x_1}{x_1} = \frac{x_2}{x_2}$ where k is the constant of variation				
	y_1 y_2				
inverse variation	$y_1 y_2$ $xy = k or x_1y_1 = x_2y_2 \text{ where } k \text{ is the constant of variation}$				
arithmetic sequence	$a_n = a_1 + (n-1)d$, nth term of arithmetic sequence, d is the common difference between terms				
arithmetic series	$a_n = a_1 + (n-1)d$, nth term of arithmetic sequence, d is the common difference between terms $S_n = \frac{n(a_1 + a_n)}{2}$, $S_n = \text{sum of first "n" terms of a finite geometric series; a_1 = \text{first term}$				
geometric sequence	$a_n = a_1 r^{n-1}$ nth term of the geometric series; r is the common ratio				
geometric series					
	$S_n = a_1 + a_1 r + + a_1 r^{n-1} = \frac{a_1(1-r^n)}{1-r}$, $S_n = \text{sum of first "n" terms of geometric series}$				
probability	$\frac{1-r}{1-r}$ Probability of an outcome happening = number of desired outcomes				
producting	total number of possible outcomes				
	Probability of two mutually exclusive events, A and B, happening = $P(A) \bullet P(B)$				
combinations	A combination means the order of the elements doesn't matter. For example, a shirt and pants is the same thing as pants and a shirt. Possible combinations of 3 shirts and 4 pants = $3 \times 4 = 12$.				
	TUTOPING				
	pants and a sint. Possible combinations of <i>P</i> sints and 4 pants – 5 x 4 – 12. ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$ number of combinations of <i>n</i> items taken <i>r</i> at a time; order does not matter; ${}_{n}P_{r} = \frac{n!}{(n-r)!}$ number of ways to arrange <i>n</i> items taken <i>r</i> at a time; order does matter;				
	r!(n-r)!				
permutations	$P = \frac{n!}{n!}$ number of ways to arrange <i>n</i> items taken <i>r</i> at a time; order does matter;				
	(n-r)!				
logarithms	$\log_b y = x$ means $y = b^x$				
	$\log_h MN = \log_h M + \log_h N$				
	$\log_b \left(\frac{M}{N} \right) = \log_b M - \log_b N$				
	$\log_b M^N = N \log_b M$				
	$\log_b M = \frac{\log_c M}{1 + 1}$ (change of base formula)				
	$\log_b M = \frac{1}{\log_c b}$ (change of base formula)				
Transformations					
Translation (no rotation or	$(x, y) \rightarrow (x + a, y + b)$ represents horizontal shift of "a" units, vertical shift of "b" units);				
size change) Reflection (flip)					
Over x-axis	$(x, y) \rightarrow (x, -y)$				
Over y-axis	$(\mathbf{x}, \mathbf{y}) \rightarrow (-\mathbf{x}, \mathbf{y})$				
Over line $y = x$	$(\mathbf{x}, \mathbf{y}) \rightarrow (\mathbf{y}, \mathbf{x})$				
Over origin (line $y=-x$)	$(\mathbf{x},\mathbf{y}) \to (-\mathbf{y},-\mathbf{x})$				
<u>Rotation about origin</u> 90° CCW or 270° CW	$(\mathbf{x},\mathbf{y}) \rightarrow (-\mathbf{y},\mathbf{x})$				
180° CCW of 270° CW	$ \begin{array}{c} (\mathbf{x}, \mathbf{y}) \rightarrow (-\mathbf{y}, \mathbf{x}) \\ (\mathbf{x}, \mathbf{y}) \rightarrow (-\mathbf{x}, -\mathbf{y}) \end{array} $				
270° CCW or 90° CW	$(x, y) \to (y, -x)$				

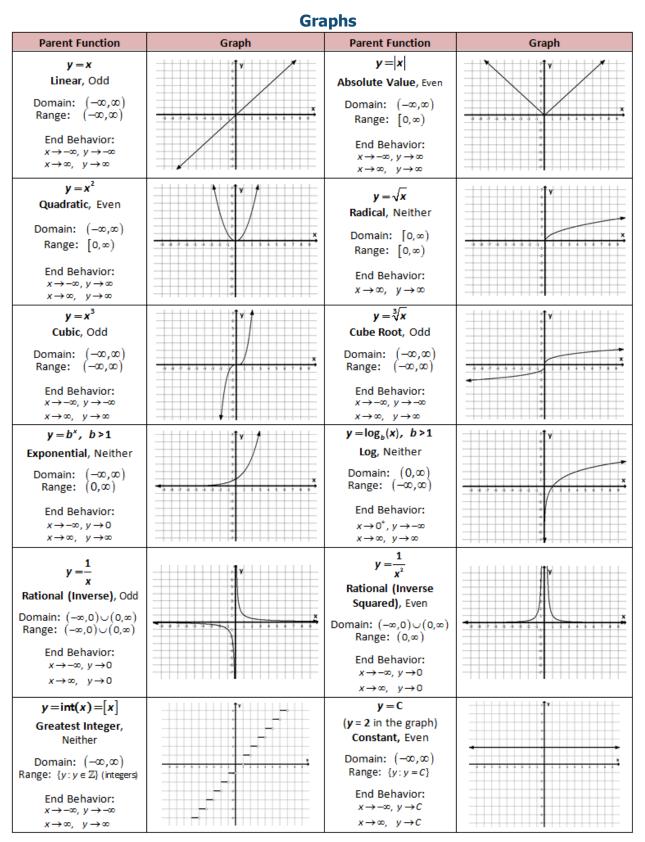
Brainiac Tutoring, LLC 2095 Exeter Road #80-180 Germantown TN 38138 www.BrainiacTutoring.com

|> |>

Geometry

Perimeter	<u>In general, perimeter = sum of lengths of sides</u>				
square	P = 4s				
rectangle	P = 2L + 2W				
circle	$C = 2\pi r$ (circumference)				
Area	Note that the units are square units.				
square	$A = s^2$				
rectangle, parallelogram	A = bh (note base and height are <i>always</i> perpendicular)				
triangle	$A = \frac{1}{2} bh$				
kite	$A = \frac{1}{2} (d_1 d_2)$ where d_1 and d_2 are lengths of the diagonals				
circle	$A = \pi r^2$				
trapezoid	$A = \frac{1}{2} (b_1 + b_2)h$ (average of bases times the height)				
<u>Volume</u>	B = area of base; h = height				
cube	$V = Bh = s^3$ where s is the side length				
rectangular prism	V = Bh = lwh				
sphere	$V = \frac{4}{3}\pi r^3$				
cone	$V = \frac{1}{3}\pi r^2 h$				
cylinder	$V = Bh = \pi r^2 h$				
Triangles					
Congruency Theorems	SSS, SAS, ASA, or AAS or use H-L (right triangles only)				
Pythagorean Theorem					
Tythagoroan Theorem	$c^2 = a^2 + b^2$ is used to find length of sides or hypotenuse, c, for a right triangle				
	If $c^2 = a^2 + b^2$, then the triangle is a right triangle (Converse of Pythagorean Theorem)				
	If $c^2 < a^2 + b^2$, then the triangle is acute				
	If $c^2 > a^2 + b^2$, then the triangle is obtuse				
Common Pythagorean	3-4-5 5-12-13 T O R 7-24-25 8-15-17				
Triples	$6 - 8 - 10 \qquad 10 - 24 - 26 \qquad 14 - 48 - 50 \qquad 16 - 30 - 34$				
45-45-90 triangle	ratios of sides lengths: $1x : 1x : x\sqrt{2}$				
30-60-90 triangle	ratios of sides lengths: $1x : x\sqrt{3} : 2x$				
	$x = \frac{60^{\circ}}{x\sqrt{3}}$				
Law of Sines and	For non -right triangles, use the Law of Sines to find side lengths and angles when possible, or use Law of Cosines				
Law of Cosines	when you have 2 sides and the included angle.				
(for non-right triangles)	$\frac{c}{b} = \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \qquad c^2 = a^2 + b^2 - 2bc \cos C$				

sum of interior angles of a convex polygon sum of exterior angles always equals 360° in a convex polygon a	Other Formulas and Fa	cts				
of a convex polygon sum of exterior angles sum of exterior angles always equals 360° in a convex polygon if a convex polygon # of diagnonals = $\frac{n(n-3)}{2}$, where n = number of sides inscribed angle facts If a convex polygon # of diagnonals = $\frac{n(n-3)}{2}$, where n = number of sides inscribed angle facts If a convex polygon An inscribed angle a is half the central angle, 2a. Therefore, the inscribed angle 90° is half of the central angle 180°. A Cyclic Quadrilateral's opposite angles add up to 180°: a + c = 180° a + c = 180° b + d = 180° b + d = 180° If always forms a right angle with the circle's radius to the point of tangency. sector area of a circle If a dog of a circle I = dog of a circle If a dog of a circle I = dog of a circle If a dog of a circle I = a dog of a circle If a dog of a circle I = a dog of a circle If a dog of a circle I = a dog of a circle If a dog of a circle I = a dog of a circle If a dog of a circle I = a dog of a circle If a dog of a circle I = a dog of a circle If a dog of a circle I = a dog of a circle If a dog of a circle I = a dog of a circle If a dog of						
sum of exterior angles in a convex polygon number of diagonals in a convex polygon in a convex polygon inseribed angle facts inseribed angle facts inseribed angle facts An inseribed angle a is half the central angle, 2a. Therefore, the inseribed angle 90° is half of the central angle 180°. A Cyclic Quadrilateral's opposite angles add up to 180°: $a + c = 180^{\circ}$ $b + d = 180^{\circ}$ A tangent is a line that just touches a circle at one point. It always forms a right angle with the circle's radius to the point of tangency. Sector area of a circle length of intercepted arc Length of diagonal of a rectangular prism $a = \frac{4}{1}$ $d = \sqrt{L^2 + H^2 + W^2}$						
in a convex polygon number of diagonals in a convex polygon inscribed angle facts inscribed angle facts $ \begin{array}{c} & & & \\ $		sum of exterior angles always equals 360°				
number of diagonals in a convex polygon $ \begin{array}{c} \text{sense} \\ \text{a convex polygon} \\ \text{inscribed angle facts} \\ \hline $						
a convex polygon a convex polygon inscribed angle facts		Example:				
An inscribed angle a is half the central angle, 2a. Therefore, the inscribed angle 90° is half of the central angle 180°. A Cyclic Quadrilateral's opposite angles add up to 180°: $a + c = 180^{\circ}$ $b + d = 180^{\circ}$ A tangent is a line that just touches a circle at one point. It always forms a right angle with the circle's radius to the point of tangency. Sector area of a circle $T_A = \frac{\theta^{\circ}}{360^{\circ}} \cdot \pi r^2 = \text{fractional part of the circle's area}$ Length of intercepted arc Length of diagonal of a rectangular prism $d = \sqrt{L^2 + H^2 + W^2}$	a convex polygon	# of diagnonals = $\frac{n(n-3)}{2}$, where n = number of sides				
Therefore, the inscribed angle 90° is half of the central angle 180°. A Cyclic Quadrilateral's opposite angles add up to 180°: $a + c = 180^{\circ}$ $b + d = 180^{\circ}$ A tangent is a line that just touches a circle at one point. It always forms a right angle with the circle's radius to the point of tangency. Bridge of the circle's radius to the point of tangency. Sector area of a circle $T_A = \frac{\theta^{\circ}}{360^{\circ}} \cdot \pi r^2 = \text{fractional part of the circle's area}$ Length of intercepted arc Length of diagonal of a rectangular prism $d = \sqrt{L^2 + H^2 + W^2}$	inscribed angle facts					
sector area of a circle A tangent is a line that just touches a circle at one point. It always forms a right angle with the circle's radius to the point of tangency. sector area of a circle $A = \frac{\theta^2}{360^\circ} \cdot \pi r^2 = \text{fractional part of the circle's area}$ length of intercepted arc $L = \frac{\theta^\circ}{360^\circ} \cdot 2\pi r = \text{fractional part of the circumference}$ Length of diagonal of a rectangular prism $d = \sqrt{L^2 + H^2 + W^2}$		Therefore, the inscribed angle 90° is half of the central angle 180°. A Cyclic Quadrilateral's opposite angles add up to 180°: $a + c = 180^{\circ}$				
sector area of a circle I always forms a right angle with the circle's radius to the point of tangency.sector area of a circle $I = \frac{\theta^2}{360^\circ} \cdot \pi r^2 = \text{fractional part of the circle's area}$ length of intercepted arc $L = \frac{\theta^2}{360^\circ} \cdot 2\pi r = \text{fractional part of the circumference}$ Length of diagonal of a rectangular prism $M = \sqrt{L^2 + H^2 + W^2}$						
Instruction Image: sector of the sector						
arc $L = \frac{\theta^{\circ}}{360^{\circ}} \cdot 2\pi r = \text{fractional part of the circumference}$ Length of diagonal of a rectangular prism $\frac{W}{h} = \sqrt{L^2 + H^2 + W^2}$	sector area of a circle	$\int_{a}^{sector} A = \frac{\partial \theta^{\sigma}}{\partial 60^{\circ}} \cdot \pi r^{2} = \text{fractional part of the circle's area}$				
rectangular prism $ \begin{array}{c} \mathbf{w} \\ \mathbf{h} \\ \mathbf{d} \\ 1 \end{array} \qquad d = \sqrt{L^2 + H^2 + W^2} $		$L = \frac{\theta^{\circ}}{360^{\circ}} \cdot 2\pi r = \text{fractional part of the circumference}$				
Vectors $\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$ similar to add complex numbers $(a + bi) + (c + di) = (a+b) + i(c + d)$						
	Vectors	$\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$ similar to add complex numbers $(a + bi) + (c + di) = (a+b) + i(c + d)$				


Trigonometry

Trigonometric ratios	$\sin \Theta = \frac{opp}{hyp} = \frac{y}{r} \qquad \qquad \csc \Theta = \frac{1}{\sin \Theta} = \frac{hyp}{opp} = \frac{r}{y}$					
	$\cos \Theta = \frac{adj}{hyp} = \frac{x}{r} \qquad \qquad$					
	$\tan \Theta = \frac{\sin \Theta}{\cos \Theta} = \frac{opp}{adj} = \frac{y}{x} \qquad \qquad \cot \Theta = \frac{\cos \Theta}{\sin \Theta} = \frac{adj}{opp} = \frac{x}{y}$					
Trig identities	$\sin^2 \Theta + \cos^2 \Theta = 1$ $1 + \cot^2 \Theta = \csc^2 \Theta$ $1 + \tan^2 \Theta = \sec^2 \Theta$					
Law of Sines and Law of Cosines	For non -right triangles, use the Law of Sines to find side lengths and angles when possible, or use Law of Cosines when you have 2 sides and the included angle .					
(for non-right triangles)	A B a b c b c b c c c c c c c c					
Sine & Cosine	$Amplitude = A \qquad Period = \frac{2\pi}{B}$					
functions	$y = A\sin(Bx+C) + D$ $y = A\cos(Bx+C) + D$ Horizontal shift = $-\frac{C}{B}$ Vertical shift = D					
Graph of $y = \sin x$	$y = A\cos(bx + C) + D$ Horizonial shift = $-\frac{1}{B}$ Vertical shift = D					
	$\begin{array}{c} 0 \\ -0.5 \\ -1 \\ -2\pi & -3\pi/2 \\ -360^{\circ} & -270^{\circ} & -180^{\circ} & -90^{\circ} \end{array} \begin{array}{c} \pi & 3\pi/2 \\ 90^{\circ} & 180^{\circ} & 270^{\circ} & 360^{\circ} \end{array}$					
Graph of $y = \cos x$	$\begin{array}{c} & & y \\ 0.5 \\ 0 \\ -0.5 \\ -1 \\ -2\pi - 3\pi/2 - \pi - \pi/2 \\ 0 \\ -360^{\circ} - 270^{\circ} - 180^{\circ} - 90^{\circ} \\ 90^{\circ} 180^{\circ} 270^{\circ} 360^{\circ} \end{array}$					
Unit Circle	degrees radians					
$x = \cos \theta$	$\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{6}$					
$y = \sin \theta$	$ \begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 $					
$180^\circ = \pi$ radians	$ \begin{array}{c} $					
	$(-1,0) \begin{bmatrix} \pi & 180^{\circ} & 0 & 0 \\ \pi & 180^{\circ} & 0^{\circ} & 0 \end{bmatrix} (1,0) \qquad 90 \qquad \frac{\pi}{2}$					
	$x = \frac{180}{270} \frac{\pi}{3\pi}$					
	$360 2\pi^{2}$					
Brainiac Tutoring, LLC 2095 Exeter Road #80-180						

Brainiac Tutoring, LLC 2095 Exeter Road #80-180 Germantown TN 38138 www.BrainiacTutoring.com

•

Brainiac Tutoring, LLC 2095 Exeter Road #80-180 Germantown TN 38138 www.BrainiacTutoring.com

ACT/SAT Formulas and Facts revised 4/2018

Conic Sections

Conic: Equation:	Circle Center: (<i>h, k</i>)	Parabola Vertex: (<i>h, k</i>)	Ellipse Center: (<i>h, k</i>) <i>a</i> always larger than b	Hyperbola Center: (<i>h, k</i>) <i>a</i> always before the "—"
Equation (Horizontal)	$(x-h)^{2} + (y-k)^{2} = r^{2}$	$x = a(y-k)^{2} + h$ or $x-h = a(y-k)^{2}$ or $b(x-h) = (y-k)^{2}$	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ Asymptotes: $y - k = \pm \frac{b}{a}(x-h)$
Graph (Horizontal)	C C	(Positive Coefficient) D: $x = \begin{array}{c} -2p \\ V \\ p \end{array}$	Co-V Co-V Co-V	Co-V
Equation (Vertical)	Same	$y = a(x-h)^{2} + k$ or $y-k = a(x-h)^{2}$ or $b(y-k) = (x-h)^{2}$	$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ Asymptotes: $y-k = \pm \frac{a}{b}(x-h)$
Graph (Vertical)	Same	(Positive Coefficient)	Co-V a V F	Co-V b b
Additional Information	To get r : $y = \pm \sqrt{r^2 - (x - h)^2} + k$	For $x-h=a(y-k)^2$: $p=\frac{1}{4a}; a=\frac{1}{4p}$ For $b(x-h)=(y-k)^2$: $b=4p; p=\frac{b}{4}$ p = focal length Negative Coefficients: Flip parabola	$c^2 = a^2 - b^2$	$c^2 = a^2 + b^2$

Brainiac Tutoring, LLC 2095 Exeter Road #80-180 Germantown TN 38138 www.BrainiacTutoring.com

|_ |_