from Kindergarten to College

| Note: |  |
| :--- | :--- |
| b (lower case) | refers to the length of a side that is perpendicular to the height, $\mathrm{h} ;$ <br> b and h are always perpendicular to each other |
| B (upper case) | refers to area of the base <br> the sides; units are linear such as $\mathrm{ft}, \mathrm{m}, \mathrm{in}, \mathrm{km}$ |
| Perimeter, p | $p=2 l+2 w$; note this applies to the rectangle, square, and rhombus, <br> since they are all parallelograms |
| square | $p=4 s$ where $s$ is side length |
| circle (circumference) | $C=2 \pi r$ |


| Area, A | area is the number of unit squares that fill a two-dimensional space; units are square units such as $\mathrm{ft}^{2}, \mathrm{~m}^{2}, \mathrm{in}^{2}$, and $\mathrm{km}^{2}$. |
| :---: | :---: |
| triangle | $A=\frac{1}{2} b h$ |
| circle | $A=\pi r^{2}$ |
| regular polygon | $A=\frac{1}{2}$ ap, where $a=$ apothem and $p=$ perimeter; apothem is the length of the perpendicular segment from the center to the side of the polygon |
| parallelogram | $A=b h$ for all parallelograms <br> a parallelogram is a quadrilateral where opposite sides are both parallel and congruent; opposite angles are congruent; consecutive angles are supplementary; diagonals bisect each other |
| rectangle | a parallelogram with all $90^{\circ}$ angles; diagonals are congruent $A=b h$ or $l w$ |
| rhombus | a parallelogram with 4 congruent sides; diagonals are perpendicular bisectors; $A=$ bh or $\frac{1}{2} d_{1} d_{2}$, where $d_{1}$ and $d_{2}$ are lengths of diagonals |
| square | a parallelogram with all sides congruent and all angles of $90^{\circ}$ $A=b h$ or $s^{2}$ where $s=$ side length |
| trapezoid | a quadrilateral with one set of parallel sides $A=\frac{b_{1}+b_{2}}{2} \cdot h=$ average of base lengths times height |
| Kite | $A=\frac{1}{2} d_{1} d_{2}$, where $d_{1}$ and $d_{2}$ are lengths of diagonals |


| Surface Area, SA | surface area is found by adding the areas of the sides of a 3-dimensional <br> shape; units are square units such as $\mathrm{ft}^{2}, \mathrm{~m}^{2}, \mathrm{in}^{2}$, and $\mathrm{km}^{2}$. |
| :--- | :--- |
| sphere | $S A=4 \pi r^{2}$ <br> pyramid <br> cube <br> SA $=B+\frac{1}{2}$ pl, where $p=$ perimeter of base and $l=$ slant height |
| rectangular prism | $S A=6 s^{2}$, where $s=$ side length; 6 sides, each with area of the square of <br> the side length |
| prisms in general | $S A=2(l w+l h+w h)$ <br> cone <br> cylinder |
| $S A=B h$ |  |


| Volume | volume is the number of unit cubes that fill a three-dimensional space; <br> units are cube units such as $\mathrm{ft}^{3}, \mathrm{~m}^{3}, \mathrm{in}^{3}$, and $^{\mathrm{km}} \mathrm{km}^{3}$. |
| :--- | :--- |
| sphere | $V=\frac{4}{3} \pi \mathrm{r}^{3}$ |
| prism (in general) | $V=B h=$ area of base times height |
| rectangular Prism | $V=l w h=$ area of rectangular base, lw, times height, $h$ |
| pyramid | $V=\frac{1}{3} B h$ |
| cylinder | $V=\pi r^{2} h=$ area of circle times height |
| cone | $V=\frac{1}{3} \pi r^{2} h=$ one third of volume of a cylinder |

