Contents	i) Rew 2) Rev
	3) Linear
	4) systems
Basic Concepts of Algebra	5-) space, determines
The Language of Algebra	6) Poly, next exf
1-1 Real Numbers and Their Graphs	3) Linear 4) Systems 5) Space, determints 6) Poly, natexy 7) Rodical & irvat 8) Selq & ser
1-2 Simplifying Expressions	9) Holy F
Operating with Real Numbers	, / 3 /
1-3 Basic Properties of Real Numbers	ii) 14 Exp & Log
1-4 Sums and Differences	(2) 21 Page Count
1-5 Products	27 FeV in Cours
1-6 Quotients	33
Solving Equations and Solving Problems	13) Matrices 14) Trig, circ lung
1-7 Solving Equations in One Variable	37 15) Trig ident
1-8 Words into Symbols	43 // 7. 150// 32
1-9 Problem Solving with Equations	49
• Explorations Exploring Irrational Numbers 832	(6) Quad (1) 14 Exp & Log (2) 21 Perm Comb (3) Matrices (4) Trig, circ func 37 15) Trig ident 43 16) Inver #5 40 Polar Vectors (7) Statistic,
• <i>Technology</i> Computer Exercises 5, 32 Calculator Key-In 12	11) Statistic,
• Special Topics Reading Algebra xiv, 26 Logical Symbols: Qu	antifiers 20

- **Special Topics** Reading Algebra xiv, 26 Logical Symbols: Quantifiers 20 Biographical Note 32 Historical Note 42 Challenge 48
- Reviews and Tests Mixed Review Exercises 5, 20, 31, 42, 54 Self-Tests 13, 36, 54 Chapter Summary 55 Chapter Review 55 Chapter Test 57

2 Inequalities and Proof

Wor	king with Inequalities	
2-1	Solving Inequalities in One Variable	59
2-2	Solving Combined Inequalities	65
2-3	Problem Solving Using Inequalities	69
Wor	king with Absolute Value	
2-4	Absolute Value in Open Sentences	73
2-5	Solving Absolute Value Sentences Graphically	76
Prov	ring Theorems	
2-6	Theorems and Proofs	81
2-7	Theorems about Order and Absolute Value	88

- Explorations Exploring Inequalities 833
- Technology Computer Exercises 64, 75 Computer Key-In 80
- Special Topics Career Note / Automotive Engineer 64 Historical Note 68 Symbolic Logic: Boolean Algebra 95
- Reviews and Tests Mixed Review Exercises 63, 72, 79, 91
 Self-Tests 72, 79, 92 Chapter Summary 92 Chapter Review 93
 Chapter Test 94 Mixed Problem Solving 98 Preparing for College Entrance Exams 99

3 Linear Equations and Functions

Linear Equations and Their Graphs

3-1	Open Sentences in Two Variables	101
3-2	Graphs of Linear Equations in Two Variables	107
<i>3-3</i>	The Slope of a Line	112
<i>3-4</i>	Finding an Equation of a Line	118
Linea	ar Systems	
3-5	Systems of Linear Equations in Two Variables	124
3-6	Problem Solving: Using Systems	131
<i>3</i> -7	Linear Inequalities in Two Variables	135
Func	tions and Relations	
3-8	Functions	141
3-9	Linear Functions	146
3-10	Relations	153

- Explorations Exploring Functions 834
- *Technology* Computer Graphing Ideas 114, 119, 160 Computer Exercises 122
- **Special Topics** Challenge 140, 158 Historical Note 152 Application / Linear Programming 159
- Reviews and Tests Mixed Review Exercises 106, 117, 130, 139, 152 Self-Tests 123, 140, 158 Chapter Summary 161 Chapter Review 162 Chapter Test 164 Cumulative Review 165

4 Products and Factors of Polynomials

Working with Polynomials

4-1	Polynomials	167
4-2	Using Laws of Exponents	171
4-3	Multiplying Polynomials	174

Fact	ors of Polynomials	15
4-4 4-5	Using Prime Factorization	179
4-5 4-6	Factoring Polynomials Factoring Quadratic Polynomials	183 188
Appl	lications of Factoring	
4-7 4-8 4-9	Solving Polynomial Equations Problem Solving Using Polynomial Equations Solving Polynomial Inequalities	194 198 202
• Ex	plorations Exploring Polynomial Factors 835	
• Te	chnology Computer Exercises 187 Computer Key-In 193	
	ecial Topics Biographical Note 177 Reading Algebra 178 storical Note 182	
Se	views and Tests Mixed Review Exercises 170, 176, 187, 197, 205 lf-Tests 177, 192, 205 Chapter Summary 206 Chapter Review 207 apter Test 208 Preparing for College Entrance Exams 209	

5 Rational Expressions

Chapter Test 257

Usir	ng the Laws of Exponents	
5-1	Quotients of Monomials	21
5-2	Zero and Negative Exponents	216
<i>5-3</i>	Scientific Notation and Significant Digits	22
Rati	ional Expressions	
5-4	Rational Algebraic Expressions	227
5-5	Products and Quotients of Rational Expressions	232
5-6	Sums and Differences of Rational Expressions	235
5-7	Complex Fractions	238
Prol	blem Solving Using Fractional Equations	
5-8	Fractional Coefficients	242
5-9	Fractional Equations	247
• Ex	cplorations Exploring Continued Fractions 836	
• Te	chnology Computer Key-In 215 Calculator Key-In 225	
	pecial Topics Biographical Note 220 Graphing Rational Functions 2 pplication / Electrical Circuits 253	:30
	eviews and Tests Mixed Review Exercises 215, 225, 234, 241, 252 elf-Tests 226, 241, 252 Chapter Summary 254 Chapter Review 255	5

6 Irrational and Complex Numbers

Roo	ts and Radicals	
6-1	Roots of Real Numbers	259
6-2	Properties of Radicals	264
6-3	Sums of Radicals	270
6-4	Binomials Containing Radicals	274
6-5	Equations Containing Radicals	277
Real	Numbers and Complex Numbers	
6-6	Rational and Irrational Numbers	283
<i>6-7</i>	The Imaginary Number i	288
6-8	The Complex Numbers	292
• Ex	coplorations Exploring Radicals 837	
• Te	echnology Calculator Key-In 263, 269	
_	pecial Topics The Irrationality of $\sqrt{2}$ 273 Historical Note 297 onjugates and Absolute Value 298	
Se	eviews and Tests Mixed Review Exercises 263, 273, 282, 291 elf-Tests 282, 297 Chapter Summary 301 Chapter Review 302 hapter Test 303 Mixed Problem Solving 304 Preparing for College ntrance Exams 305	

7 Quadratic Equations and Functions

Solv	ring Quadratic Equations	
7-1	Completing the Square	307
7-2	The Quadratic Formula	311
Roo	ts of Quadratic Equations	
7-3	The Discriminant	317
7-4	Equations in Quadratic Form	322
Qua	dratic Functions and Their Graphs	
7-5	Graphing $y - k = a(x - h)^2$	326
7-6	Quadratic Functions	333
7-7	Writing Quadratic Equations and Functions	338
• E	xplorations Exploring Quadratic Equations 838	
• To	echnology Computer Graphing Ideas 327, 838 Computer Exercise	s 321
	pecial Topics Biographical Note 316 Challenge 325 areer Note / Statistician 337	
S	deviews and Tests Mixed Review Exercises 310, 321, 332, 345 elf-Tests 316, 325, 345 Chapter Summary 346 Chapter Review 348 Chapter Test 348 Cumulative Review 348	346

8 Variation and Polynomial Equations

Varia	ation and Proportion	
8-1 8-2	Direct Variation and Proportion Inverse and Joint Variation	351 358
Poly	nomial Equations	
8-3 8-4 8-5 8-6	Dividing Polynomials Synthetic Division The Remainder and Factor Theorems Some Useful Theorems	364 368 372 377
Solv	ing Polynomial Equations	
8-7 8-8 8-9	Finding Rational Roots Approximating Irrational Roots Linear Interpolation splorations Exploring Direct Variation 839	382 386 391
	chnology Computer Graphing Ideas 386, 387 Computer Key-Incomputer Exercises 395	389
Se	eviews and Tests Mixed Review Exercises 357, 367, 376, 385 elf-Tests 363, 381, 396 Chapter Summary 396 Chapter Review 3 hapter Test 398 Preparing for College Entrance Exams 399	97
Coni	c Sections: Circles and Parabolas	
9-1 9-2 9-3	Distance and Midpoint Formulas Circles Parabolas	401 407 412
Coni	c Sections: Ellipses and Hyperbolas	
9-4 9-5 9-6	Ellipses Hyperbolas More on Central Conics	418 426 432
Syst	ems of Equations	
9-7 9-8 9-9	The Geometry of Quadratic Systems Solving Quadratic Systems Systems of Linear Equations in Three Variables	436 439 444
• Ex	colorations Exploring Circles and Ellipses 840	

• Technology Computer Graphing Ideas 436, 840 Computer Exercises 406 • Special Topics Challenge 411 Career Note / Computer Graphics Artist 423

Application / Planetary Orbits 424 Historical Note 431

• Reviews and Tests Mixed Review Exercises 406, 417, 431, 438, 449 Self-Tests 417, 435, 450 Chapter Summary 450 Chapter Review 451 Chapter Test 453

10 Exponential and Logarithmic Functions

Exponential Functions	
10-1 Rational Exponents10-2 Real Number Exponents10-3 Composition and Inverses of Functions	455 459 463
Logarithmic Functions	
10-4 Definition of Logarithms10-5 Laws of Logarithms	468 473
Applications	
 10-6 Applications of Logarithms 10-7 Problem Solving: Exponential Growth and Decay 10-8 The Natural Logarithm Function Explorations Exploring Powers and Roots 841 	478 483 489
 Technology Computer Graphing 460, 464, 841 Calculator Key-In 492 Special Topics Growth of Functions 462 Challenge 492 Application / Radiocarbon Dating 493 Historical Note 472 Reviews and Tests Mixed Review Exercises 458, 467, 477, 488 Self-Tests 467, 477, 493 Chapter Summary 495 Chapter Review 496 Chapter Test 497 Mixed Problem Solving 498 Preparing for College Entrance Exams 499 	

11 Sequences and Series

	Circo	
11-1	Types of Sequences	501
11-2	Arithmetic Sequences	507
11-3	Geometric Sequences	510
Serie	es .	
11-4	Series and Sigma Notation	518
11-5	Sums of Arithmetic and Geometric Series	525
11-6	Infinite Geometric Series	531
Binoi	mial Expansions	
11-7	Powers of Binomials	537
11-8	The General Binomial Expansion	540
• Exp	plorations Exploring Pascal's Triangle 842	
• Tec	chnology Computer Exercises 530 Calculator Key-In 543	

- Special Topics Challenge 516 Graphing Sequences 517
 Career Note / Marine Biologist 522 Induction 523 Biographical Note 544
- Reviews and Tests Mixed Review Exercises 506, 515, 530, 539 Self-Tests 516, 536, 543 Chapter Summary 544 Chapter Review 545 Chapter Test 546 Cumulative Review 547

12 Triangle Trigonometry

Trigonometric Functions

12-2 12-3	Angles and Degree Measure Trigonometric Functions of Acute Angles Trigonometric Functions of General Angles Values of Trigonometric Functions	549 555 561
		568
Irian	gle Trigonometry	n grant y and the
<i>12-5</i>	Solving Right Triangles	574
<i>12-6</i>	The Law of Cosines	580
<i>12-7</i>	The Law of Sines	586
<i>12-8</i>	Solving General Triangles	591
<i>12-9</i>	Areas of Triangles	597
. F.	planeties E I i E i D i 042	

- Explorations Exploring Trigonometric Ratios 843
- Technology Calculator Key-In 554 Computer Exercises 584
- **Special Topics** Career Note / Flight Engineer 567 Historical Note 573 Reading Algebra 585 Biographical Note 601 Challenge 601
- Reviews and Tests Mixed Review Exercises 554, 567, 579, 590, 600 Self-Tests 572, 600 Chapter Summary 602 Chapter Review 602 Chapter Test 604 Preparing for College Entrance Exams 605

13 Trigonometric Graphs; Identities

Circular Functions and Their Graphs

13-1	Radian Measure	607
13-2	Circular Functions	613
13-3	Periodicity and Symmetry	619
13-4	Graphs of the Sine and Cosine	624
<i>13-5</i>	Graphs of the Other Functions	630
Trigo	nometric Identities	
13-6	The Fundamental Identities	636
<i>13-7</i>	Trigonometric Addition Formulas	641
<i>13-8</i>	Double-Angle and Half-Angle Formulas	646
<i>13-9</i>	Formulas for the Tangent	650
• Ex	plorations Exploring Sine Curves 844	
• Te	chnology Computer Graphing 624, 625, 631 Computer Exercises	645

хi

- **Special Topics** Biographical Note 618 Historical Note 618 Challenge 623 Application / Frequencies in Music 634
- Reviews and Tests Mixed Review Exercises 612, 623, 633, 645, 653 Self-Tests 634, 654 Chapter Summary 654 Chapter Review 655 Chapter Test 657

14 Trigonometric Applications

Vectors	
14-1 Vector Operations	659
14-2 Vectors in the Plane	666
Polar Coordinates and Complex Numbers	
14-3 Polar Coordinates	675
14-4 The Geometry of Complex Numbers	680
14-5 De Moivre's Theorem	685
Inverse Functions	
14-6 The Inverse Cosine and Inverse Sine	689
14-7 Other Inverse Functions	693
14-8 Trigonometric Equations	697
• Explorations Exploring Polar Coordinate Equations 845	

- *Technology* Computer Exercises 670 Computer Key-In 701 Computer Graphing Ideas 845
- **Special Topics** Application / Force, Work, and Energy 672 Spirals 679 Biographical Note 684
- Reviews and Tests Mixed Review Exercises 665, 679, 688, 696
 Self-Tests 671, 688, 700 Chapter Summary 702 Chapter Review 703
 Chapter Test 704 Mixed Problem Solving 705 Preparing for College Entrance Exams 706 Cumulative Review 707

15 Statistics and Probability

Statistics

15-1	Presenting Statistical Data	709
<i>15-2</i>	Analyzing Statistical Data	713
<i>15-3</i>	The Normal Distribution	719
<i>15-4</i>	Correlation	724
Coun	ting	
15-5	Fundamental Counting Principles	730
<i>15-6</i>	Permutations	734
<i>15-7</i>	Combinations	738

Probability	
15-8 Sample Spaces and Events	743
15-9 Probability	745
15-10 Mutually Exclusive and Independent Events	754
• Explorations Exploring Probability with Experiments 846	
• <i>Technology</i> Computer Exercises 742, 750 Computer Key-In 762	
• Special Topics Career Note / Electrician 718 Challenge 733 Readin Algebra 751 Application / Sampling 752 Random Numbers 753	g
• Reviews and Tests Mixed Review Exercises 712, 723, 733, 741, 750 Self-Tests 729, 742, 761 Chapter Summary 763 Chapter Review 764 Chapter Test 765	1
Matrices and Determinants	
Matrices	
16-1 Definition of Terms	767
16-2 Addition and Scalar Multiplication	770
16-3 Matrix Multiplication 16-4 Applications of Matrices	774
16-4 Applications of Matrices	779
Inverses of Matrices	
16-5 Determinants	787
16-6 Inverses of Matrices	790
Working with Determinants	
16-7 Expansion of Determinants by Minors	794
16-8 Properties of Determinants	798
16-9 Cramer's Rule	801
• Explorations Exploring Matrices in Geometry 847	
• Special Topics Augmented Matrices 785 Historical Note 793	
• Reviews and Tests Mixed Review Exercises 769, 778, 789, 797, 805 Self-Tests 784, 793, 805 Chapter Summary 806 Chapter Review 806 Chapter Test 808 Preparing for College Entrance Exams 809	5
Tables 810 Explorations 832 Portfolio Projects 848 Appendix A 1 Common Logarithms: Notation and Intermelation 856	
Appendix A-1 Common Logarithms: Notation and Interpolation 856 A-2 Common Logarithms: Computation 858	5
A-3 Discrete Mathematics 862	
A-4 Preparing for College Entrance Exams 864	
A-5 Using Permutations and Combinations to Compute Prol	oabilities 869
A-6 Checking the Validity of a Proof 871	3.555000
A-7 The Sum, Difference, Product, and Quotient of Function	is 873
Glossary 875 Index 885 Answers to Selected Exercises	

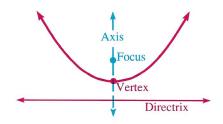
16

Reading Your Algebra Book

An algebra book requires a different type of reading than a novel or a short story. Every sentence in a math book is full of information and logically linked to the surrounding sentences. You should read the sentences carefully and think about their meaning. As you read, remember that algebra builds upon itself; for example, the method of factoring that you'll study on page 188 will be useful to you on page 697. Be sure to read with a pencil in your hand: Do calculations, draw sketches, and take notes.

Vocabulary

You'll learn many new words in algebra. Some, such as polynomial and parabola, are mathematical in nature. Others, such as power and proof, are used in everyday speech but have different meanings when used in algebra. Important words whose meanings you'll learn are printed in heavy type. Also, they are listed at the beginning of each Self-Test. If you don't recall the meaning of a word, you can look it up in the Glossary or the Index at the back of the book. The Glossary will give you a definition, and the Index will give you page references for more information.



Symbols

Algebra, and mathematics in general, has its own symbolic language. You must be able to read these symbols in order to understand algebra. For example, |x| > 2 means "the absolute value of x is greater than 2." If you aren't sure what a symbol means, check the list of symbols on page xvi.

Diagrams

Throughout this book you'll find many diagrams. They contain information that will help you understand the concepts under discussion. Study the diagrams carefully as you read the text that accompanies them.

Displayed Material

Throughout this book important information is displayed in gray boxes. This information includes properties, definitions, methods, and summaries. Be sure to read and understand the material in these boxes. You should find these boxes useful when reviewing for tests and exams.

If a is a real number and m and n are positive integers, then $a^m \cdot a^n = a^{m+n}$.

This book also contains worked-out examples. They will help you in doing many of the exercises and problems.

Example

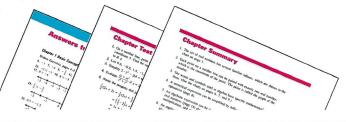

Simplify $x^3 \cdot x^5$.

Solution

$$x^3 \cdot x^5 = x^{3+5} = x^8 \quad Answer$$

Reading Aids

Throughout this book you will find sections called Reading Algebra. These sections deal with such topics as independent study and problem solving strategies. They will help you become a more effective reader and problem solver.



Exercises, Tests, and Reviews

Each lesson in this book is followed by Oral and Written Exercises. Lessons may also include Problems, Mixed Review Exercises, and optional Computer Exercises. Answers for all Mixed Review Exercises and for selected Written Exercises, Problems, and Computer Exercises are given at the back of this book.

Within each chapter you will find Self-Tests that you can use to check your progress. Answers for all Self-Tests are also given at the back of this book.

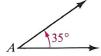
Each chapter concludes with a Chapter Summary that lists important ideas from the chapter, a Chapter Review in multiple-choice format, and a Chapter Test. Lesson numbers in the margins of the Review and Test indicate which lesson a group of questions covers.

Reading Algebra/Symbols

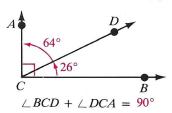
a absolute value of a 3 $base b$ = equals or is equal to 6 E summation sign 51 ≠ does not equal 6 ! factorial 54 > is greater than 6 ' degree 54 × is less than 6 ' minute 55 is less than or equal to 6 E second 55 ⇒ is greater than or equal to 6 E second 55 ∴ therefore 6 E ull norm of the vector u 66 an the e th power of e 7 E cosine e and the e the power of e 15 e standard deviation 71 additive inverse of e or the 15 e correlation coefficient 72 Ø empty set or null set 38 E number of permutations of e elements taken e at e time at e is approximately equal to 222 E plus-or-minus sign 259 The formula of e 142 E inverse cosine e 73 • e inverse cosine e 74 • e correlation coefficient 72 • e number of combinations 73 • e is approximately equal to 222 • e plus-or-minus sign 259 The formula of e 142 intersection 75 • e intersection 75 • e conjugate of the complex 1298 • e complement of event e 75 • e e e 10	{ }	set	1	$\log_b N$	logarithm of N to the	469
≠ does not equal 6 ! factorial 54 factorial 55 factorial 56 factorial 57 factorial 58 fa	a	absolute value of a	3			
$rac{1}{2}$ does not equal $rac{1}{2}$ is greater than $rac{1}{2}$ is less than $rac{1}{2}$ is less than $rac{1}{2}$ is less than $rac{1}{2}$ is less than or equal to $rac{1}{2}$ is less than or equal to $rac{1}{2}$ is less than or equal to $rac{1}{2}$ is greater than or equal to $rac{1}{2}$ is greater than or equal to $rac{1}{2}$ is greater than or equal to $rac{1}{2}$ is an element of $rac{1}{2}$ is an element of $rac{1}{2}$ is an element of $rac{1}{2}$ is approximately equal to $rac{1}{2}$ is imaginary unit ($rac{1}{2}$ = −1) $rac{1}{2}$ 288 $rac{1}{2}$ intersection $rac{1}{2}$ inverse function of $rac{1}{2}$ determinant $rac{1}{2}$ inverse of matrix rac	=:	equals or is equal to	6	Σ	summation sign	518
Solution Solutio	≠	does not equal	6		factorial	540
is less than	>	is greater than	6	0	degree	549
is less than or equal to is greater than or equal to in the neth power of a inverse cosine inverse osine	<		6	, ,	minute	550
is greater than or equal to itherefore and the nth power of a is an element of and the memory of a is an element of additive inverse of a or the opposite of a if a the number of a if a the memory of a is approximately equal to imaginary unit (i² = −1) all imaginary unit (i² = −1) all inverse function of f all inverse of matrix A all invers	≤	is less than or equal to		<i>II</i>	second	550
∴ therefore 6 u norm of the vector u 66 a^n the n th power of a 7 Cos ⁻¹ inverse cosine or arc cosine ∈ is an element of 9 σ standard deviation 71 $-a$ additive inverse of a or the opposite of a σ	≥	Charles also the vert		\overrightarrow{AB}	vector AB	659
a^n the n th power of a 7 a^n inverse cosine a^n 68 a^n the a th power of a^n 7 a cosine a standard deviation 71 a additive inverse of a or the opposite of a 8 a standard deviation 72 a correlation coefficient 72 a number of permutations of a elements taken a at a time 73 a is approximately equal to 222 a inverse function of a 142 a inverse function of a 143 a 144 a 155 a 156 a 157 a 15				u	norm of the vector u	661
additive inverse of a or the opposite of a or the value of a or the value of a or the value of a of a or the value of a of a to a t		the <i>n</i> th power of <i>a</i>		Cos ⁻¹		689
opposite of a \emptyset empty set or null set $f(x)$ f of x or the value of f at x $f(x)$ is approximately equal to $f(x)$ f of $f(x)$ or the value of $f(x)$ at a time $f(x)$ imaginary unit $f(x)$ imaginary unit $f(x)$ at a time $f(x)$ f of $f(x)$ or the value of $f(x)$ at a time $f(x)$ f of $f(x)$ or the value of $f(x)$ at a time $f(x)$ f of $f(x)$ or the value of $f(x)$ at a time $f(x)$ f of $f(x)$ or the value of $f(x)$ at a time $f(x)$ f of $f(x)$ or the value of $f(x)$ at a time $f(x)$ f of $f(x)$ or the value of $f(x)$ at a time $f(x)$ f of $f(x)$ or the value of $f(x)$ at a time $f(x)$ $f(x$	\in	is an element of	9	σ	standard deviation	715
of n elements taken r at a time at x \approx is approximately equal to \Rightarrow plus-or-minus sign \Rightarrow imaginary unit ($i^2 = -1$) \Rightarrow conjugate of the complex number z \Rightarrow conjugate of z \Rightarrow plus-or-minus sign \Rightarrow z	-a		15	r	correlation coefficient	725
$f(x)$ f of x or the value of f 142at a timeat x nC_r number of combinations of n elements taken r 73 \approx is approximately equal to222of n elements taken r \pm plus-or-minus sign259at a time $\sqrt[n]{b}$ n th root of b 260 $P(E)$ probability of event E 74 i imaginary unit $(i^2 = -1)$ 288 \bigcirc intersection75 \overline{z} conjugate of the complex number z 298 \bigcirc \bigcirc \bigcirc $a^{p/q}$ q th root of p th power of a 455det determinant of a 78 f^{-1} inverse function of f 464	Ø	empty set or null set	38	$_{n}P_{r}$		735
is approximately equal to 222 n^{C_r} number of combinations of n elements taken r at a time 259 $\sqrt[n]{b}$ n th root of b 260 $P(E)$ probability of event E 74 i imaginary unit ($i^2 = -1$) 288 i intersection 75 i conjugate of the complex 298 i number i union 75 i complement of event i i complement of i	f(x)		142			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~		222	$_{n}C_{r}$		738
i imaginary unit $(i^2 = -1)$ 288 \cap intersection 75 \overline{z} conjugate of the complex 298 \overline{E} complement of event E 75 $a^{p/q}$ qth root of pth power 455 det determinant 78 of a A^{-1} inverse function of f 464				P(E)	probability of event E	745
\overline{z} conjugate of the complex 298 \overline{E} complement of event E 75 \overline{E} complement of event E 75 \overline{E} det determinant 78 of \overline{E} inverse function of \overline{E} inverse of matrix \overline{E} 79				\cap		754
conjugate of the complex 298 number z \overline{E} complement of event E 75 $a^{p/q}$ q th root of p th power 455 det determinant 78 of a A^{-1} inverse of matrix A 79 f^{-1} inverse function of f				U	union	754
$a^{p/q}$ qth root of pth power 455 det determinant 78 of a A^{-1} inverse of matrix A 79 f ⁻¹ inverse function of f 464	Z		298	\overline{E}	complement of event E	757
of a $A^{-1} \text{inverse of matrix } A \qquad 79$ $f^{-1} \text{inverse function of } f \qquad 464$	$a^{P/q}$	qth root of pth power	455	det		787
f^{-1} inverse function of f 464						790
	f^{-1}	inverse function of f	464	No bar in	e vox mercus accommun	

xvi

Reading Algebra/Table of Measures


	Meti	ric l	Units
Length	10 millimeters (mm)		1 centimeter (cm)
	100 centimeters 1000 millimeters	=	1 meter (m)
	1000 meters	=	1 kilometer (km)
Area	100 square millimeters (mm ²)		
	10,000 square centimeters	=	1 square meter (m ²)
Volume	1000 cubic millimeters (mm ³)	=	1 cubic centimeter (cm ³)
	1,000,000 cubic centimeters	=	1 cubic meter (m ³)
Liquid Capacity	1000 milliliters (mL)	=	1 liter (L)
	1000 cubic centimeters	=	1 liter
Mass	1000 milligrams (mg)	=	1 gram (g)
	1000 grams	=	1 kilogram (kg)
Temperature in	0°C	=	freezing point of water
degrees Celsius (boiling point of water

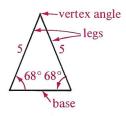
	United States	Cu	stomary Units
ength	12 inches (in.) 36 inches		1 foot (ft) 1 yard (yd)
	5280 feet) 1760 yards		
rea	144 square inches (in. ²) 9 square feet		1 square foot (ft ²) 1 square yard (yd ²)
olume	1728 cubic inches (in. ³) 27 cubic feet		1 cubic foot (ft ³) 1 cubic yard (yd ³)
quid Capacity		=	1 pint (pt) 1 quart (qt) 1 gallon (gal)
Veight	16 ounces (oz)	=	1 pound (lb)
emperature in degrees Fahrenheit (°F)			freezing point of water boiling point of water

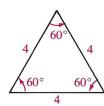

Time
60 seconds (s) = 1 minute (min)
60 minutes = 1 hour (h)

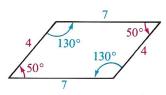
Facts and Formulas from Geometry


Angle: A figure formed by two rays that have the same endpoint. To indicate that the measure of $\angle A$ is 35°, we write $\angle A = 35^{\circ}$.

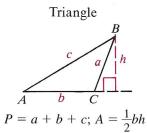
Complementary angles: two angles whose measures have the sum 90°.

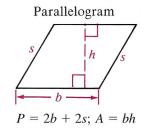

Isosceles triangle: a triangle having at least two equal sides and two equal angles. The two sides are called *legs* and the included angle is called the *vertex angle*.


Supplementary angles: two angles whose

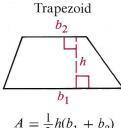

measures have the sum 180°.

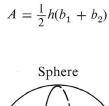
Equilateral triangle: a triangle having three equal sides. Each angle measures 60°, so the triangle is also called equiangular.


Parallelogram: a quadrilateral (a four-sided polygon) whose opposite sides are equal and parallel. The opposite angles are also equal.

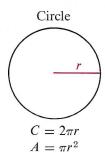


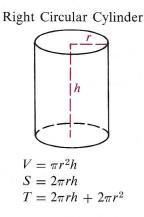
The sum of the measures of the angles of a polygon with n sides is $180(n-2)^{\circ}$. For example, the sum of the measures of the angles of a triangle is 180° and the sum of the measures of the angles of a quadrilateral is 360° .

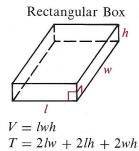

Let: A = area, P = perimeter, C = circumference, S = lateral surface area, T = total surface area, V = volume, $\pi \approx 3.1416$

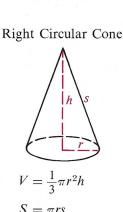


Rectangle
$$\begin{array}{c|c}
 & l \\
 & w \\
\hline
 & l \\
 & w \\
\hline
 & l \\
P = 2l + 2w; A = lw
\end{array}$$


Facts and Formulas from Geometry






$$V = \frac{4}{3}\pi r^3$$

$$T = 4\pi r^2$$

 $T = \pi r s + \pi r^2$

Using Technology with This Course

There are three types of optional computer material in this text: Computer Key-In features, Computer Exercises, and suggestions for using computer graphing techniques to explore concepts and confirm results.

The Computer Key-In features can be used by students without previous programming experience. These features teach some programming in BASIC and usually include a program that students can run to explore an algebra topic covered in the chapter.

The optional Computer Exercises are designed for students who have some familiarity with programming in BASIC. Students are usually asked to write one or more programs related to the lesson just presented.

The suggestions for applying computer graphing techniques are appropriate for use with a graphing calculator or graphing software such as *Algebra Plotter Plus*.

Calculator Key-In features and certain exercise sets also suggest appropriate use of scientific calculators with this course.