

Algebra

absolute value $ x - y $	the distance between 2 points, x and y , on a number line		
absolute value $ x $	$ x = \begin{cases} x, & \text{if } x \ge 0 \\ x = \begin{cases} x, & \text{if } x \ge 0 \\ x = x = 0 \end{cases}$ x expresses the distance from x to zero on the number line		
	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_2)^2}$ distance between 2 points (x_1, y_2) and (x_2, y_2) on coordinate plane		
distance formula	Note that the distance formula is derived from the Dethermore. Thermal		
midpoint formula	$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = b^2 - 4ac \text{(average of the x coordinates, average the y coordinates)}$		
	$m = \frac{y_2 - y_1}{x_2 - x_1}$ slope is the measure of the steepness of a line (x_2, y_2)		
slope of a line			
between any 2 points	horizontal line slope = 0 since rise = 0 vertical line slope is undefined since run = 0 (x, y)		
(x_1, y_1) and (x_2, y_2)	parallel lines have equal slopes; $run = x_2 \cdot x_1$		
	perpendicular lines - slopes are opposite (negative) reciprocals; product of slopes = -1		
<u>linear equation</u>	y = my + h where $m = slone$ and $(0, h) = y$ intercent		
point-slope form	y = mx + b, where $m =$ slope and $(0, b) = y$ -intercept $y - y_1 = m(x - x_1)$		
standard form	Ax + By = C		
factoring	$a^2 - b^2 = (a + b)(a - b)$		
sum of 2 squares	$\begin{array}{c} a^{2} - b^{2} = (a + b)(a - b) \\ \text{prime (not factorable)} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $		
difference of 2 cubes	$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$ $1 2 2 1$		
sum of 2 cubes	$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$		
perfect square trinomials	$(a+b)^2 = a^2 + 2ab + b^2$ and $(a-b)^2 = a^2 - 2ab + b^2$ 1 5 10 10 5 1		
quadratic formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ yields solutions for $ax^2 + bx + c = 0$		
	Note: the sum of the two solutions is $\frac{-b}{a}$ and product of solutions $=\frac{c}{a}$		
discriminant test	$b^2 - 4ac = 0 \rightarrow \text{ one real solution}$ $b^2 - 4ac > 0 \rightarrow \text{ two real solutions; if } b^2 - 4ac is a perfect square, the solutions are retional$		
	$b^2 - 4ac < 0 \rightarrow$ two real solutions, if $b^2 - 4ac$ is a perfect square, the solutions are rational $b^2 - 4ac < 0 \rightarrow$ two complex conjugate solutions		
exponent rules	$x^{0}=1$ $(x^{a})^{b}=x^{ab}$ $x^{a}x^{b}=x^{a+b}$ $\frac{x^{a}}{x^{b}}=x^{a-b}$ $x^{-a}=\frac{1}{x^{a}}$ and $\frac{1}{x^{-a}}=x^{a}$		
radicals and exponents	$\sqrt{x} = x^{\frac{1}{2}}$ $\sqrt[3]{x} = x^{\frac{1}{3}}$ $\sqrt[b]{x^{a}} = x^{\frac{a}{b}}$		
complex number	$i=\sqrt{-1}$ $i^2=-1$ $i^3=-i$ $i^4=1$		
	If $ algebraic expression = A$, then set up two equations and solve:		
absolute value equation	algebraic expression = A and algebraic expression = $-A$		
	If algebraic expression < A, then set up compound inequality (conjunction) and solve:		
absolute value inequalities	-A < algebraic expression < A		
	If algebraic expression > A, then set up two inequalities (disjunction) and solve:		
	algebraic expression $> A or$ algebraic expression $< -A$		

ACT/SAT Formulas and Facts revised 4/2024

Distance, rate, time	d = rt distance = rate x time		
arithmetic mean= average	$average = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$		
median	The median of a set of numbers is the middle value when the data are in order. If there is an even number of terms, the median is the average of the two in the middle.		
mode	The mode of a set of numbers is the number that occurs most frequently		
% change	change in quantity		
	original quantity		
proportion	$\frac{a}{b} = \frac{c}{d}$ implies $ad = bc$ by cross-multiplication		
direct variation	$y = kx$ or $\frac{x_1}{y_1} = \frac{x_2}{y_2}$ where k is the constant of variation		
inverse variation	$xy = k$ or $x_1y_1 = x_2y_2$ where <i>k</i> is the constant of variation		
arithmetic sequence	$a_n = a_1 + (n-1)d$, nth term of arithmetic sequence, d is the common difference between terms		
arithmetic series	$S_n = \frac{n(a_1 + a_n)}{2}$, $S_n = \text{sum of first "n" terms of a finite geometric series; } a_1 = \text{first term}$		
geometric sequence	$a_n = a_1 r^{n-1}$ nth term of the geometric series; r is the common ratio		
geometric series	$S_n = a_1 + a_1 r + \dots + a_1 r^{n-1} = \frac{a_1(1-r^n)}{1-r}$, $S_n = \text{sum of first "n" terms of geometric series}$		
probability	Probability of an outcome happening = $\frac{\text{number of desired outcomes}}{\text{total number of possible outcomes}}$		
	Probability of two mutually exclusive events, A and B, happening $=P(A) \bullet P(B)$		
combinations	A combination means the order of the elements doesn't matter. For example, a shirt and pants is the same thing as pants and a shirt. Possible combinations of 3 shirts and 4 pants = $3 \times 4 = 12$.		
	$nC_r = \frac{n!}{r!(n-r)!}$ number of combinations of <i>n</i> items taken <i>r</i> at a time; order does not matter		
permutations	$nP_r = \frac{n!}{(n-r)!}$ number of ways to arrange <i>n</i> items taken <i>r</i> at a time; order does matter		
logarithms	$log_b y = x means y = b^x$		
	$\frac{\log_b M N - \log_b M + \log_b N}{M}$		
	$log_b\left(\frac{1}{N}\right) = log_b M - log_b N$		
	$log_b M^N = N log_b M$		
	$\log_{10} M = \frac{\log_{c} M}{(change of hase formula)}$		
	$log_b M = \frac{log_c b}{log_c b}$ (change of base formula)		
Transformations			
Translation (no rotation or	$(x, y) \rightarrow (x + a, y + b)$ represents horizontal shift of "a" units, vertical shift of "b" units);		
size change)			
<u>Kerlection (IIIp)</u> Over y avis	$(\mathbf{y}, \mathbf{y}) \rightarrow (\mathbf{y}, \mathbf{y})$		
Over v-axis	$ \begin{array}{c} (\Lambda, \mathbf{y}) \rightarrow (\Lambda, \mathbf{y}) \\ (\mathbf{x}, \mathbf{y}) \rightarrow (-\mathbf{x}, \mathbf{y}) \end{array} $		
Over line $v = x$	$(x, y) \rightarrow (y, x)$		
Over origin (line $v = -x$)	$(x, y) \rightarrow (-y, -x)$		
Rotation about origin			
90° CCW or 270° CW	$(\mathbf{x}, \mathbf{y}) \rightarrow (-\mathbf{y}, \mathbf{x})$		
180° CCW or 180° CW	$(\mathbf{x},\mathbf{y}) \to (-\mathbf{x},-\mathbf{y})$		
270° CCW or 90° CW	$(\mathbf{x},\mathbf{y}) \to (\mathbf{y},\mathbf{-x})$		

Geometry

<u>Perimeter</u>	<u>In general, perimeter = sum of lengths of sides</u>
square	$P = 4_S$
rectangle	P = 2L + 2W
circle	$C = 2\pi r$ (circumference)
Area	Note that the units are square units.
square	$A = s^2$
rectangle, parallelogram	A = bh (note base and height are <i>always</i> perpendicular)
triangle	$A = \frac{1}{2} bh$
kite	$A = \frac{1}{2} (d_1 d_2)$ where d_1 and d_2 are lengths of the diagonals
circle	$A = \pi r^2$
trapezoid	$A = \frac{1}{2} (b_1 + b_2)h$ (average of bases times the height)
<u>Volume</u>	<u>B = area of base; h = height</u>
cube	$V = Bh = s^3$ where s is the side length
rectangular prism	V = Bh = lwh
cylinder	$V = Bh = \pi r^2 h$
<u>Triangles</u>	
	Right Triangle Isosceles triangle Equilateral Triangle Scalene Triangle
	A each The
	52 62 4600 TH DINH
	no equal lengh
Congruency Theorems	SSS, SAS, ASA, or AAS or use H-L (right triangles only)
Pythagorean Theorem	$c^2 = a^2 + b^2$ is used to find length of sides or hypotenuse, c, for a right triangle
	If $c^2 = a^2 + b^2$, then the triangle is a right triangle (Converse of Pythagorean Theorem)
	If $c^2 < a^2 + b^2$, then the triangle is acute
	If $c^2 > a^2 + b^2$, then the triangle is obtuse
Common Pythagorean	3-4-5 $5-12-13$ $7-24-25$ $8-15-17$
Triples	$6 - 8 - 10 \qquad 10 - 24 - 26 \qquad 14 - 48 - 50 \qquad 16 - 30 - 34$
Special Triangles	45-45-90 triangle 30-60-90 triangle
	45° (Isosceles right triangle)
	x $x\sqrt{2}$ 60^{9} y
	45%
	x $x\sqrt{3}$
Quadrilaterals	(tarallelogram) = opp sides 2
	p opp sides 11
	The processition is supple.
	- cosecutive - s - off co
	· opp. 2's 2
	Rectinete edizande bisect
	K Checking O
	- parallelogram with
×	KA 900 L'S (Rhombus)
	diamark ~ * * + · · · · · · · · · · · · · · · · ·
	· a a gorar = parallelogram with
	sides 2
	the second design of the second
	- diagonals + pisconn
	a caure
	A prollebourgen with sides 3 and
	N angles =
	leal bi
	k s(kite) × keg
	b2 (Impercial & br A
	V Intrevio A PC
L	ting Asserves
	Page 3 one set of
	opp sides // "apeziod)

ACT/SAT Formulas and Facts revised 4/2024

Other Formulas and Facts				
sum of interior angles	$S = (n-2)180^\circ$ where $n = \#$ of sides			
of a convex polygon	(triangle sum = 180° ; quadrilateral sum = 360° ; pentagon sum = 540° ; hexagon sum = 720°)			
sum of exterior angles	sum of exterior angles always equals 360°			
in a convex polygon				
number of diagonals in a convex polygon	<i>Example:</i> # of diagonals = $\frac{n(n-3)}{2}$, where n = number of sides			
inscribed angle facts	An inscribed angle a is half the central angle, 2a. Therefore, the inscribed angle 90° is half of the central angle 180°. A Cyclic Quadrilateral's opposite angles add up to 180°: $a + c = 180^{\circ}$ $b + d = 180^{\circ}$			
	Reduser of tangent is a line that just touches a circle at one point. It always forms a right angle with the circle's radius to the point of tangency.			
sector area of a circle	$A = \frac{\theta^o}{360^o} \pi r^2 = \text{fractional part of the circle's area}$			
length of intercepted arc	$L = \frac{\theta^o}{360^o} 2\pi r = \text{fractional part of the circumference}$			
Length of diagonal of a rectangular prism	$d = \sqrt{L^2 + H^2 + W^2}$			

ACT/SAT Formulas and Facts revised 4/2024

Trigonometry					
Trigonometric ratios Identities	$sin \ \Theta = \frac{opp}{hyp} = \frac{y}{r} \qquad csc \ \Theta = \frac{1}{sin \Theta} = \frac{hyp}{opp} = \frac{r}{y}$ $cos \ \Theta = \frac{adj}{hyp} = \frac{x}{r} \qquad sec \ \Theta = \frac{1}{cos \Theta} = \frac{hyp}{adj} = \frac{r}{x}$ $tan \ \Theta = \frac{sin \Theta}{cos \Theta} = \frac{opp}{adj} = \frac{y}{x} \qquad cot \ \Theta = \frac{cos \Theta}{sin \Theta} = \frac{adj}{opp} = \frac{x}{y}$ $sin^2 \Theta + cos^2 \Theta = 1 \qquad 1 + cot^2 \Theta = csc^2 \Theta \qquad 1 + tan^2 \Theta = sec^2 \Theta$				
Law of Sines and	For non -right triangles, use the Law of Sines to find side lengths and angles when possible, or use				
(for non-right triangles)	Law of Cosines when you have 2 sides and the included angle . $\frac{c}{b} = \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \qquad c^2 = a^2 + b^2 - 2ab \cos C$				
Sine & Cosine					
functions	$y = A\sin(Bx + C) + D$	2			
	$y = A\cos(Bx + C) + D$ Amplitude = $ A $	$Period = \frac{2\pi}{B}$			
	Horizontal shift = $-\frac{C}{B}$ Vertical shift = D				
Unit Circle $x = \cos \theta$ $y = \sin \theta$ $y/x = \tan \theta$ $180^{\circ} = \pi \text{ radians}$	$\begin{array}{c} y \\ (0,1) \\ (0,$	Degrees radians 0 0 30 $\frac{\pi}{6}$ 45 $\frac{4}{7}$ 60 $\frac{\pi}{3}$ 90 $\frac{\pi}{2}$ 180 π 270 $\frac{3\pi}{2}$ 360 2π			

revised 4/2024

Graphs

revised 4/2024

Conic Sections

